

Name: ..

Roll No: ..

Branch:...SEM:…………...........

Academic Year: ..

Empower youth - Architects of Future World

Estd: 2008

METHODIST
COLLEGE OF ENGINEERING & TECHNOLOGY
UGC AUTONOMOUS Institution Affiliated to Osmania University, Accredited

by NBA & Naac with A+

Abids, Hyderabad, Telangana, 500001

BE III Semester

AUTONOMOUS

DEPARTMENT OF MECHANICAL ENGINEERING

LABORATORY MANUAL

PROGRAMMING FOR PROBLEM
SOLVING LABORATORY

Estd: 2008

METHODIST
COLLEGE OF ENGINEERING & TECHNOLOGY
Approved by AICTE New Delhi | Affiliated to Osmania University, Hyderabad

Abids, Hyderabad, Telangana, 500001

VISION

To produce ethical, socially conscious and innovative
professionals who would contribute to sustainable
technological development of the society.

MISSION

To impart quality engineering education with latest
technological developments and interdisciplinary skills
to make students succeed in professional practice.

To encourage research culture among faculty and
students by establishing state of art laboratories and
exposing them to modern industrial and organizational
practices.

To inculcate humane qualities like environmental
consciousness, leadership, social values, professional
ethics and engage in independent and lifelong learning
for sustainable contribution to the society.

Estd: 2008

METHODIST
COLLEGEOF ENGINEERING &

TECHNOLOGY
Approved by AICTE New Delhi | Affiliated to Osmania University,

Hyderabad

Abids, Hyderabad, Telangana, 500001

DEPARTMENT OF MECHANICAL ENGINEERING

LABORATORY MANUAL

PROGRAMMING FOR
PROBLEM SOLVING

LABORATORY
(6ES351CS)

Prepared by

Dr. Md. Fakhruddin.H.N., Professor. Mech. Engg.
Mr. Shaik Shoeb, CAD Lab Assistant. Mech. Engg.

DEPARTMENT OF MECHANICAL ENGINEERING

VISION

To be a reputed centre of excellence in the field of mechanical engineering by
synergizing innovative technologies and research for the progress of society.

MISSION

 To impart quality education by means of state-of-the-art infrastructure.

 To involve in trainings and activities on leadership qualities and social

responsibilities.

 To inculcate the habit of life-long learning, practice professional ethics and
service the society.

 To establish industry-institute interaction for stake holder development.

DEPARTMENT OF MECHANICAL ENGINEERING

After 3-5 years of graduation, the graduates will be able to:

PEO1: Excel as engineers with technical skills, and work with complex

engineering systems.

PEO2: Capable to be entrepreneurs, work on global issues, and contribute

to industry and society through service activities and/or professional
organizations.

PEO3: Lead and engage diverse teams with effective communication and

managerial skills.

PEO4: Develop commitment to pursue life-long learning in the chosen

profession and/or progress towards an advanced degree

DEPARTMENT OF MECHANICAL ENGINEERING

PROGRAM OUTCOMES
Engineering Graduates will be able to:

Po1. Engineering knowledge: Apply the basic knowledge of mathematics, science

and engineering fund a mentals along with the specialized knowledge of mechanical
engineering to understand complex engineering problems.

PO2. Problem analysis: Identify, formulate, design and analyse complex
mechanical engineering problems using knowledge of science and engineering.

Po3. Design/development of solutions: Develop solutions for complex

engineering problems, design and develop system components or processes that
meet the specified needs with appropriate consideration of the public health and
safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Formulate engineering
problems, conduct investigations and solve using research-based knowledge.

PO5. Modern tool usage: Use the modern engineering skills, techniques and tools

that include IT tools necessary for mechanical engineering practice.

Po6.Theengineerandsociety: Apply the contextual knowledge to assess societal,

health, safety, legal and cultural issues and the consequent responsibilities relevant to
the professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional

engineering solutions in societal and environmental contexts, and demonstrate the
knowledge of, and need for sustainable development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and
responsibilities during professional practice.

PO9. Individual and team work: Function effectively as an individual, and as a

member or leader in diverse teams, and in multidisciplinary settings.

PO10.Communication: Communicate effectively on complex engineering activities
to various groups, ability to write effective reports and make effective presentations.

PO11. Project management and finance: Demonstrate and apply the knowledge

to understand the management principles and financial aspects in multidisciplinary
environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and

ability to engage in Independent and life-long learning in the broadest context of
technological change.

PROGRAM SPECIFIC OUTCOMES

Mechanical Engineering Graduates will be able to:

PSO1: Apply the knowledge of CAD/CAM/CAE tools to analyse, design and develop
the products and processes related to Mechanical Engineering.

PSO 2: Solve problems related to mechanical systems by applying the principles of
modern manufacturing technologies.

PSO 3: Exhibit the knowledge and skill relevant to HVAC and IC Engines.

CODE OF CONDUCT

1. Students should report to the concerned labs as per the time table schedule.

2. Students who turn up late to the labs will in no case be permitted to perform the
experiment scheduled for the day.

3. After completion of the experiment, certification of the concerned staff in-charge
in the observation book is necessary.

4. Staff member in-charge shall award marks based on continuous evaluation for each
experiment out of maximum 15 marks and should be entered in the evaluation
sheet/attendance register.

5. Students should bring a note book of about 100 pages and should enter the
readings/observationsintothenotebookwhileperformingtheexperiment.

6. The record of observations along with the detailed experimental procedure of the
experiment performed in the immediate last session should be submitted and certified by
the staff member in-charge.

7. Not more than three students in a group are permitted to perform the experiment on
a setup for conventional labs and one student in case of computer labs.

8. The components required pertaining to the experiment should be collected from stores
in-charge after duly filling in the requisition form.

9. When the experiment is completed, students should disconnect the setup made by them,
and should return all the components/instruments taken for the purpose.

10. Any damage of the equipment or burn-out of components will be viewed seriously either
by putting penalty or by dismissing the total group of students from the lab for the
semester/year.

11. Students should be present in the labs for the total scheduled duration.

12. Students are required to prepare thoroughly to perform the experiment before coming to
Laboratory.

DO’S

1. Leave footwear & bag outside the laboratory at their designated place.

2. Enter the system number in the register & use the system alone.

3. Report any broken plugs, exposed electrical wires or any unsafe conditions to your
lecturer/laboratory staff immediately.

4. Read and understand the procedure from Lab Manual as how to carry out an activity thoroughly
before coming to the laboratory.

5. Always keep anti-virus in active mode

6. Students must carry their Identity Cards & Observation Notes in the Lab.

7. Enter or Leave the lab only with the permission of the lab in charge.

8. Turn off the respective system and arrange the chairs properly before leaving the laboratory.

DON'TS

1. Do not install, uninstall or alter any software on computer.

2. Do not touch electrical fittings nor connect or disconnect any plug or cable.

3. Do not plug in external drives like pen drive, external hard disk or mobile phone

4. Students are not allowed to work in the Lab without the presence of faculty or instructor.

5. Do not leave your place, misbehave or make noise while in the Lab.

6. Don’t scatter around unwanted things while doing an experiment.

7. Do not eat or drink in the laboratory.

COURSE OBJECTIVES

The objectives of this course are

1 Understand the fundamentals of programming in C Language.

2 Write, compile and debug programs in C.

3 Formulate solution to problems and implement in C.

4 Effectively choose programming components to solve computing problems

COURSE OUTCOMES

CO
No.

Course Outcomes

PO

CO 1 Choose appropriate data type for implementing programs
in C language 1,2,3,4,5,8,9,10

CO 2 Design and implement modular programs involving input
output operations, decision making and looping
constructs

1,2,3,4,5,8,9,10

CO 3 Apply derived data types and implement programs to store

data in structures and files
1,2,3,4,5,8,9,10

CO 4 Develop confidence for self-education and ability towards
lifelong learning need of computer languages

1,2,3,4,5,8,9,10

COURSE OUTCOMES VS POs MAPPING

S. NO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3

6ES351CS.1 3 1 1 1 2 - - 2 3 2 - - - 1 -

6ES351CS.2 3 1 0 2 0 - - 3 3 2 - - - 1 -

6ES351CS.3 3 3 0 0 3 - - 3 3 1 - - - 1 -

6ES351CS.4 3 2 0 0 3 - - 3 3 0 - - - 1 -

Avg 3.0 1.7 0.25 0.75 2.7 - - 2.75 3 1.25 - - - 1 -

LIST OF EXPERIMENTS

Exp.
No.

Experiment Name

1. Finding maximum and minimum of given set of numbers, finding roots of

quadratic equation

2. Sin x and Cos x values using series expansion.

3. Generating Pascal triangle, pyramid of numbers.

4. Factorial, Fibonacci, GCD recursive and non-recursive procedures

5. Linear search and binary search using recursive and non-recursive

procedures.

6. Bubble sort and selection sort.

7. Matrix addition and multiplication using arrays,

8. Programs on pointers: pointer to arrays, pointer to functions.

9. Programs on structures, union, enum and string manipulations.

10. File handling programs (Reading, Writing, Copying files)

11. Program illustrating using Command Line Arguments

INDEX

Experiment
No

Experiment Name

Date

Page No
Marks Remarks/

Signature P R V T

Experiment
No

Experiment Name

Date

Page No
Marks Remarks/

Signature P R V T

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page 1

Introduction to C Language

Language levels

CONTENTS

1. Introduction

2. Fundamentals of computer programming

Operating System

Program execution

3. Introduction to C language

History of C

Features of C

Applications of C

Structure of C program

Problem solving process

4. The algorithm

Characteristics

Examples

5. Flow charts

Guidelines

Examples

6. Summary

Learning Objectives

1. To understand fundamentals of C language

2. To know structure of C program

3. To develop algorithm/flowcharts

4. To know applications of C language

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page 2

1. Introduction

Programming in C is one of the most important papers for Electronic Science subject at post

graduate level. Every student planning to make career in Electronics Science should have some

kind of programming skills. One may ask a question like “What are the different computer

languages an electronics student must learn for his career?” It is like asking a question “How

many cars a driver should practice to learn driving? Practice driving only one car. It is sufficient.

Similarly, mastering one programming language is enough. Learn the better implementation

strategies in programming.

Overall, in the language learning what is most important is to have deep knowledge

about what to tell computer to do and follow the different implementation strategies like how to

write algorithm, how to work with computer memory and operating system effectively.

Ultimately, you should learn only as much as required to get solution to a problem. Remember

that language is not the solution but it is a tool to solve the problem. This course is designed to

teach you how to program in C. It assumes no previous background of any programming

language. In this module, the focus is on understanding the fundamentals of computer

programming and general introduction to C language.

2. Fundamentals of computer programming

Computers are really dumb machines because they do only what they are asked to do. Many

computers perform operations on a very basic level like addition/subtraction of numbers etc.

These basic operations are decided by the instruction set of the computer. To solve a problem

using a computer, it is necessary to express the method to solve the problem using the primitive

instructions of the computer. A sequence of instructions given to the computer is known as

program. The method or strategy used for solving the problem is known as algorithm. With the

algorithm in hand, it is possible to write the instructions necessary to implement the algorithm.

Programs are developed to solve some problem. These programs can be written using some

computer language like Basic, C, C++, Java etc.

Language levels

When computers were first developed, the only way to program them was in terms of binary

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page 3

numbers. These binary numbers are corresponds to machine instructions and referred to as

Machine language and are stored in computer’s memory. The next step in programming was the

development of assembly languages . This has enabled the programmer to work with the

computers on a slightly higher level. Instead of specifying the sequences of binary numbers to

carry out particular tasks, the assembly language permits the programmer to use symbolic names

to perform various operations. An assembler translates the assembly language program into the

machine instructions i.e in binary.

Table-1: World of programming languages.

High level languages Ada

 Modula-2

Pascal

COBOL

FORTRAN

 BASIC

Middle level languages Java

C++

 C

 FORTH

Macro-assembler

Low level language Assembler

The machine language and the assembly language is popularly known as Low level language.

The programmer must learn the instruction set of the particular computer system to write a

program in assembly language, and the program is not portable. The program will not run on a

different processor. This is because different processors have different instruction sets. As these

assembly language programs are written in terms of seperate instruction sets, they are machine

dependent.

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page 4

For writing the program once independent of the processor, it was necessary to standardize the

syntax of a language. Higher-level language was introduced so that a program could be written in

the language to be machine independent. That is, a program could run on any machine that

supported the language with few or no changes. To execute a higher-level language, a special

computer program must be developed that translates the statements of the higher-level language

into a form that the computer can understand. This program is known as a compiler. Table -1

indicates the position of C in programming languages.

Operating System

Operating system is program that controls the entire operations of computer system. Access to all

the resource of the computer e.g. memory and input/output devices is provided through the

operating system. This program looks after the file management, memory management and I/O

management. It is a program that allows all other program to use the computing capability of the

computer and execute them. The most popular operating systems are Windows, Linux, Unix,

Mac OS X, MSDOS etc.

Program Execution

Before writing a computer program one must be clear about the steps to be performed by the

computer for processing it. To produce an effective computer program it is necessary that every

instruction is written in the proper sequence. For this reason, the program must be planned before

writing. An algorithm represents the logic of the program. When an algorithm is expressed in the

programming language, it becomes the program.

A compiler is simply a program developed in a particular computer language usually a higher

level language and then translates it into a form that is suitable for execution on a particular

computer system. Fig. 1 indicates the different stages right form program coding to execution,

Initially, the text editor will help the programmer to enter the C program and store it as

file with and extension “.c”. The program written by the user with the help of text editor is

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page 5

Figure 1: Program development stages

known as the source program. Every source program must have a valid filename e.g. “file.c”.

Once the source program is entered into a file then one can proceed to the compilation,

To start the compilation process, the file containing the source C program must be specified.

Compiler examines each program statement present in the source programs for correct syntax

Start

Edit

Compiler and

assembler

Source

Program

(file.c)

Yes Errors? Object

Program

(file. obj)

No

Linker

Libraries and

other object

program

Execute

Executable

Program

(a.exe)

No Result

OK?

Done

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page 6

and semantics of the language. If there are any mistakes or errors detected by the compiler then

these are reported to the user and compila tion process is terminated. The errors must be removed

from the source program and then compilation process may be reinitiated.

Once all the syntax error (e.g. missing parentheses) or semantic error (e.g. variable not defined)

have been removed then compiler restarts it process. Compiler takes the statements of the

program and translates it into lower language. After the program has been translated into lower

level language like assembly language, the next stage is to translate these assembly instructions

into machine language. In many compilers, this stage is automatically executed along with the

compilation process. The result of this compilation process is the generation of the object file

from the given source file. This object file has an extension “.obj” and contains the object code.

The filename is just same as source filename but with different extension name.

After the program is converted into object code, the linker automatically starts the process. The

purpose of linker phase is to link the present file with any previously compiled file and system’s

library. At the end of linking the system generates a file with the same source filename but with

extension “.exe”. Once executable file is generated then the program is ready to execute or run.

Computer system execute each program statement sequentially. If any external data is required

then user must input it. Once the processing is over the result is displayed as the output of the

program.

If the desired results are obtained the complete process is over else go back to the editor and

check for the logical error. At this state, the built in debugger can help programmer to remove the

bugs from the program. In this case the entire processor of editing, compiling, linking and

executing the program. Usually, the process of editing, compilation, executing and debugging

is managed under one umbrella by a single Integrated Development Environment (IDE).

3. Introduction to C language

Before learning how to write programs in C it would be important to know a brief history,

features, structure and applications of C language. In this section, the attempt is made to present

this information in short.

History of C Language

The origin of C is closed related with the development of UNIX operating system for PDP-7

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page 7

computers. UNIX operating system was originally written by Ritchie and Thompson using

assembly language. Even for PDP-11, the operating system was developed using assembly

language. Developers were planning to rewrite OS using the B language using the Thompson’s

simplified version of BCPL (Basic Combined Programming Language).

The development of C language started in 1972 on PDP-11 UNIX system by Dennis Ritchie. The

name of C language simply continued the alphabetic order. C is the result of a development

process that started with an older language called BCPL. It was developed by Martin Richards,

and it influenced a language called B, which was implemented by Ken Thompson. B language

led to the development of C language in the 1970s.

In the summer of 1983 a committee was established to create an ANSI (American National

Standards Institute) standard that would define the C language. This process took much time but

the ANSI C standard was finally adopted in December 1989, with the first copies becoming

available in early 1990. The ANSI C was also adopted by ISO (International Standards

Organization). The 1989 standard for C, along with Amendment 1, became a base document for

Standard C++, defining the C subset of C++. The version of C defined by the 1989 standard is

commonly referred to as C89.

During the 1990s, the development of the C++ standard consumed most programmers' attention.

However, work on C continued quietly along, with a new standard for C being developed. The

end result was the 1999 standard for C, usually referred to as C99.

Features of C

C is a general-purpose high level language that was originally developed for the UNIX operating

system. The UNIX operating system and virtually all UNIX applications are written in C

language. C has now become a widely used professional language for various reasons. Figure 2

indicates feature of c at a glance.

Portability
Structure Oriented

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page 8

Modularity Middle level

Case sensitive Syntax based

Structure Oriented C

features

Use of Pointer

Fast and efficient

Portability
Compiler Based

Simple
Platform

Figure 2: Features of C – at a glance

It is a very simple and easy language. C language is mainly used for develop desktop based

application. All other programming languages were derived directly or indirectly from C

programming concepts. C language has following features;

1. Simple

Every c program can be written in simple English language so that it is very easy to understand

and developed by programmer.

2. Portability

C programs are portable. It is the concept of carrying the instruction from one system to another system.

In C language .C file contain source code, we can edit also this code. .exe file contain application, only we

can execute this file. When we write and compile any C program on window operating system that

program easily run on other window based system.

3. Powerful

C is a very powerful programming language, it have a wide verity of data types, functions, control

statements, decision making statements, etc.

4. Structure oriented

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page 9

C is a Structure oriented programming language.Structure oriented programming language aimed

on clarity of program, reduce the complexity of code, using this approach code is divided into

sub-program/subroutines. These programming have rich control structure

5. Case sensitive

It is a case sensitive programming language. In C programming 'break and BREAK' both are

different

6. Modularity

It is concept of designing an application in subprogram that is procedure oriented approach. In c

programming we can break our code in subprogram.

For example we can write a calculator programs in C language with divide our code in

subprograms.

7. Middle level language

C programming language can supports two level programming instructions with the combination

of low level and high level language that's why it is called middle level programming language.

8. Syntax based language

C is a strongly tight syntax based programming language.

9. Efficient use of pointers

Pointers is a variable which hold the address of another variable, pointer directly direct access to

memory address of any variable due to this performance of application is improve. In C language

also concept of pointer are available.

10. Fast and Efficient

C programs are fast to compile and run efficiently.

11. Compiler based

C is a compiler based programming language that means without compilation no C program can

be executed. First we need compiler to compile our program and then execute

12. Platform independent

A language is said to be platform independent when the program executes independent of the

computer hardware and operating system.

Therefore C is platform independent programming language.

Note: .obj file of C program is platform dependent.

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page 10

c a Middle-Level Language

C is often called a middle-level computer language. It does not mean that C is less powerful,

difficult to use, or less developed than a high-level language such as BASIC or Pascal. Rather,

C is thought of as a middle-level language because it combines the best elements of high-level

languages with the control and flexibility of assembly language. As a middle-level language, C

allows the manipulation of bits, bytes, and addresses, the basic elements with which the computer

functions. Despite this fact, C code is also very portable. C language is very often known as a

System Programming Language, because it is used for writing assemblers, compilers, editors

and even operating systems,

Applications of C

C language is used in wide variety of applications. Practical applications of C language are several,

right form writing the operating systems like UNIX, Windows to creating antivirus programs.

Some application of C language is given below.

 To design the system software like operating system and compiler.

 To develop application software like database and spread sheets.

 For development of Graphical related application like computer simulators and mobile

games.

 C programming language can be used to design Network Devices Drivers

 For writing embedded system software

 Development of Text editors and language interpreters.

 Creating video games, 3 D animations, Multimedia applications, Image

processing, modelling and simulations etc.

Structure of C program

Programming structure of C language consists of header file, main function and body of function as

shown in figure 3.

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page 11

Figure 3: Structure of c program

The C language program starts form main() function which is Function name. The program

function start with { (open brace) and ends with } (close brace). Then valid c statements are to be

written between open brace and close brace . The functions written between open and close

brace called as function body. Semicolon (;) is used to end the valid statement.

Let us consider a very simple program; here programmer wants to display some text

message.

#include <stdio.h> //library function for standard input output

main () //Execution begins

{ //Opening brace

printf(“Fergusson College”); //Executable statement

} //Closing brace

Output of program is

Fergusson College

Problem solving process

Any scientific and engineering problem can be solved using some Problem Solving process. Here

total six important steps are given to solve any general problem.

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page 12

1. Understanding a problem

2. Identifying necessary inputs and expected output

3. Design an algorithm/flowchart

4. Writing or coding the program

5. Testing the code

6. Debugging

Everything begins with problem therefore it is necessary to understand the problem clearly.

With a given problem, the second step is to know necessary inputs and expected outputs. By

knowing the input and output parameter the next step is to design an algorithm to solve the

problem or one prefer to draw the design in a graphical way using flowchart. Once the algorithm

or flow chart is ready, the obvious step is to start Writing or coding the program in an

appropriate programming language which is suitable for given a application Any program is not

complete without testing the code with possible inputs. This stage is also referred to as program

execution or running the program. If there are any errors in the program then debugging is an

important step in problem solving i.e. removing the bugs or error.

4. The algorithm

An algorithm is a finite sequence of instructions which can be carried out to solve a particular

problem in order to obtain the desired results.

 A finite sequence of instructions

 The program must be planned before writing.

 Represents the logic of the program

 Instructions are to be written in the proper sequence.

 Expressed in the programming language, becomes the program

Characteristics of an algorithm

An algorithm must satisfy the following criteria:

1) Input: Zero or more quantities are externally supplied as inputs.

2) Output: At least one quantity as output is produced.

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page 13

3) Finiteness: An algorithm terminates after a finite number of steps.

4) Definiteness: Each instruction must be clear and unambiguous.

5) Effectiveness: Every instruction must be very basic so that it can b carried out in

principle, by a person using just a pencil and paper.

To use Turbo C, here are some common shortcut keys:
1. File Operations:

 - New File: Ctrl+N

 - Open File: Ctrl+O

 - Save File: Ctrl+S

 - Save As: Ctrl+Shift+S

 - Print: Ctrl+P

 - Exit: Alt+F4

2. Editing:

 - Cut: Ctrl+X

 - Copy: Ctrl+C

 - Paste: Ctrl+V

 - Undo: Ctrl+Z

 - Redo: Ctrl+Y

 - Find: Ctrl+F

 - Find Next: F3

 - Replace: Ctrl+H

3. Compiling and Running:

 - Compile: Alt+F9

 - Build: Ctrl+F9

 - Run: Ctrl+F10

4. Debugging:

 - Start Debugging: Ctrl+Shift+F9

 - Step Into: F7

 - Step Over: F8

 - Run to Cursor: Ctrl+F4

 - Set/Clear Breakpoint: F5

 - View Registers: Alt+R

 - View Memory: Alt+M

5. Navigation:

 - Go to Line: Ctrl+G

 - Next Tab: Ctrl+Tab

 - Previous Tab: Ctrl+Shift+Tab

6. Other:

 - Help: F1

 - Switch between Code and Output: Alt+F5

 - Toggle Full Screen: Alt+Enter

 - Close: Alt+X

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page14

PROGRAM 1.

1. a). Finding the maximum and minimum of given set of numbers?

Aim:

To find the maximum and minimum of given set of numbers. For input & output Statements we

include the header file <stdio.h> and for clear the screen include the <conio.h>.

Description:

If—else statement

if…else statement is used to make a decision based on two choices. It has the following form:

syntax:

if(condition)

{

True Stmt block;

}

Else

{

False stmt block;

}

Stmt-x;

In this syntax,

If and else are the keywords.

<condition> is a relational expression or logical expression or any expression that returns either true

or false. It is important to note that the condition should be enclosed within parentheses (and). The

true stmt block and false stmt block are simple statements or compound statements or null statements.

Stmt-x is any valid C statement.

Algorithm:

Step 1: Start

Step 2: Read ‘n’, which is number of elements

Step 3: If i<n then

Step 4: Accept elements into an array list[i] upto given range

Step 5: min=max=sum=list[0]

Step 6: If i<n then

Step 7: If list[i]>max then

Step 8: max is equal to list[i]

Step 9: If list[i]<min then

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page15

Step 10: min is equal to list[i]

Step 11: sum is equal to sum plus list[i]

Step 12: Repeat steps 7 to 11 until i<n

Step 15: Print “max”, “min” and “average”

Step 16: Exit

Step 17: Stop

Program:

#include<stdio.h>

#include<conio.h> void

main()

{ int a[50], i, n, max, min; clrscr();

printf(“Enter size of the array: \n”);

scanf(“%d”, &n);

printf(“Enter elements in the array: \n”); for(i

= 0;i < n;i++)

{ scanf(“%d”, &a[i]);

} max=a[0];

min=a[0]; for(i =

1;i < n;i++)

{ if(a[i] > max)

max=a[i];

if(a[i] < min)

min=a[i];

} printf(“Maximum element = %d

\n”, max); printf(“Minimum element = %d

\n”, min);

getch();

}

Expected Output :

Enter size of the array: 6

Enter elements in the array: 78 45 67 23 14 49

Maximum element = 78

Minimum element = 14

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page16

1. b). Finding the roots of a given Quadratic equation?

Aim:

To find the roots of a given quadratic equation. For input & output statements we include the header

file <stdio.h> and for clear the screen include the <conio.h>.

Algorithm:

Step 1: Start

Step 2: Input the values for a, b, c

Step 3: d=b*b –4*a*c

Step 4: if d greater than zero

a) print roots are read and distinct

b) r1= -b+ √ d / (2*a)

c)r2= -b-√ d / (2*a)

Step 5: Print r1 and r2, go to 7

Step 6: if d is equal to zero

a) Print roots are real and equal

b) r1 = - b/2*a

Print r1, go to 7 else

print roots are imaginary Step

7: Stop

Program:

#include<stdio.h>

#include<conio.h>

#include<math.h> void

main()

{ float a, b, c, d, r1, r2, rp, ip; clrscr();

printf("Enter a b c values: \n");

scanf("%f%f%f", &a, &b, &c);

if(a = = 0)

{ printf(" not a QE");

}

else

{ d =

b*b-4*a*c;

} if(d >=

0)

{

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page17

printf("Roots are real \n");

r1 = (-b + sqrt(d)) / (2*a);

r2 = (-b - sqrt(d)) / (2*a);

printf("Roots are %f and %f \n", r1, r2);

}

else

{ printf("Roots are imaginary \n");

rp = -b / (2*a); ip =

sqrt(-d) / (2*a);

printf("Roots are (%f , %f) and (%f , %f) \n", rp, ip, rp, -ip);

} getch();

}

Expected Output 1:

Enter a b c values: 3 5 2

Roots are real Roots are -0.666667 and -1.000000

Expected Output 2:

Enter a b c values: 4 2 8

Roots are imaginary Roots are (-0.250000, 1.391941) and (-0.250000, -1.391941)

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page18

PROGRAM 2. Sin x and Cos x values using series expansion

2. a). Sin x value using series expansion.

Aim: To find the value of sin x using series expansion. For input & output statements we include the

header file <stdio.h>, for arithmetic operations include the <math.h> and for clear the screen include

the <conio.h>.

Description:

for statement:

It is one of the looping control statements. It is also called as entry-controlled looping control

statement. i.e., it tests the condition before entering into the loop body. The syntax for “for” statement

is as follows:

Syntax:

for(exp1;exp2;exp3)

for-body

next_statement;

In this syntax,

for is a keyword. exp1 is the initialization statement. If there is more than one statement, then those

should be separated with commas. exp2 is the condition. It is a relational expression or a compound

relational expression or any expression that returns either true or false. The exp3 is the updating

statement. If there is more than one statement, then those should be separated with commas. exp1,

exp2 and exp3 should be separated with two semi-colons. exp1, exp2, exp3, for-body and

next_statement are valid ‘c’ statements. for-body is a simple statement or compound statement or a

null statement.

Algorithm:

Step 1: Start the program.

Step 2: Declare all the required variables.

Step 3: Read the Input for Number of terms (n) and Angle in degres (x).

Step 4: Compute x = (x * 3.14) / 180.

Step 5: Set sum = x and term = x.

Step 6: if(i < = n) then goto step 7.

Step 7: Compute and set term = (term * (-1) * x * x) / ((2 * i) * (2 * i + 1)).

Step 8: Compute and set sum+ = term.

Step 9: Compute i = i + 1 then goto step 6.

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page19

Step 10: Display the sinx value.

Step 11: Stop the program.

Program:

#include<stdio.h>

#include<conio.h>

#include<math.h> void

main()

{

float x, sum,

term; int i, n;

clrscr();

printf("Enter the no of terms: \n");

scanf("%d", &n);

printf("Enter the angle in degrees x: \n");

scanf("%f", &x);

x = (x*3.14) /

180;

sum = x;

term = x;

for(i = 1;i <= n;i++)

{ term = (term*(-1)*x*x) / ((2*i)*(2*i+1));

sum+ = term;

} printf("Sin valve of given angle is

%f", sum); getch();

}

Expected Output:

Enter the no of terms: 3

Enter the angle in degrees x: 30

Sin valve of given angle is 0.499770

2. b). Cos x value using series expansion?

Aim:

To find the value of cos x using series expansion. For input & output statements we include the header

file <stdio.h>, for arithmetic operations include the <math.h> and for clear the screen include the

<conio.h>.

Algorithm:

Step 1: Start the program.

Step 2: Declare all the required variables.

Step 3: Read the Input for Number of terms (n) and Angle in degres (x).

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page20

Step 4: Compute x = (x * 3.14) / 180.

Step 5: Set sum = 1 and term = 1.

Step 6: if(i < = n) then goto step 7.

Step 7: Compute and set term = (term * (-1) * x * x) / ((2 * i) * (2 * i - 1)).

Step 8: Compute and set sum+ = term.

Step 9: Compute i = i + 1 then goto step 6.

Step 10: Display the cosx value.

Step 11: Stop the program.

Program:

#include<stdio.h>

#include<conio.h>

#include<math.h> void

main()

{ float x, sum, term; int i,

n; clrscr();

printf("Enter the no of terms: \n");

scanf("%d", &n);

printf("Enter the angle in degrees x: \n");

scanf("%f", &x); x

= (x*3.14) / 180;

sum = 1; term = 1;

for(i = 1;i <=

n;i++)

{ term = (term*(-1)*x*x) / ((2*i)*(2*i-1));

sum+ = term;

} printf("Cos valve of given angle is

%f", sum); getch();

}

Expected Output:

Enter the no of terms: 3

Enter the angle in degrees x: 30

Cos valve of given angle is 0.866158

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page21

PROGRAM 3. Generating a Pascal Triangle and Pyramid of Numbers.

3. a). Generating a Pascal Triangle?

Aim:

To print pascal triangle. For input & output statements we include the header file <stdio.h> and for

clear the screen include the <conio.h>.

Description:

All values outside the triangle are considered zero (0). The first row is 0 1 0 whereas only 1 acquire

a space in pascal's triangle, 0s are invisible. Second row is acquired by adding (0+1) and (1+0). The

output is sandwiched between two zeroes. The process continues till the required level is achieved.

Pascal's triangle can be derived using binomial theorem. We can use combinations and factorials to

achieve this.

Algorithm:

Step1: Start.

Step2: Declare variables x, y, n, a, z, s.

Step3: Enter the limit.

Step4: Initialize the value of variables, s=n , x=0, y=0 , z=s.

Step5: Do the following operations in loop. x = 0 to n. a= 1, x++ z=s to 0.

Step6: print space. z—- y = o to x. print a. a = a*(x-y)/(y+1) y= y+1. go to next line.

Step7: Repeat the process to n.

Step8: Print the final required triangle.

Step9: Stop.

Program:

#include<stdio.h>

#include<conio.h>

long fact(int); void

main()

{

int n, i, j;

clrscr();

printf("Enter the no. of lines: \n");

scanf("%d", &n);

for(i = 0;i < n;i++)

{ for(j = 0;j < n-i-1;j++) printf(" "); for(j = 0;j <=

i;j++) printf("%ld ", fact(i) / (fact(j)*fact(i-j)));

printf("\n");

} getch();

}

long fact(int num)

{ long f = 1;

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page22

int i = 1;

while(i <= num)

{

f = f*i; i++;

} return

f;

}

Expected Output:

Enter the no. of lines:8

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

3. b). Generating a Pyramid of Numbers (Floyd’s Triangle)?

Aim:

To print Pyramid of Numbers (Floyd’s Triangle). For input & output statements we include the

header file <stdio.h> and for clear the screen include the <conio.h>.

Description:

A pyramid of numbers is a graphical representation that shows the number of organisms at each

trophic level. It is an upright pyramid in light of the fact that in an ecosystem, the producers are

always more in number than other trophic levels

.

Algprithm:

Step 1 - Take number of rows to be printed, n.

Step 2 - Make outer iteration I for n times to print rows

Step 3 - Make inner iteration for J to I

Step 3 - Print n

Step 4 - Print NEWLINE character after each inner iteration Step

5 - Return

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page23

Program:

#include<stdio.h>

#include<conio.h> void

main()

{ int i, j, r, k = 1; clrscr(); printf("Enter the

range: \n"); scanf("%d", &r);

printf("FLOYD'S TRIANGLE: \n \n");

for(i = 1;i <= r;i++)

{ for(j = 1;j <= i;j++,k++)

printf(" %d", k);

printf("\n");

} getch();

}

Expected Output:

Enter the range: 10

FLOYD'S TRIANGLE

1

2 3

4 5 6

7 8 9 10

11 12 13 14 15

16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35 36

37 38 39 40 41 42 43 44 45

46 7 48 49 50 51 52 53 54 55

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page24

PROGRAM 4. Recursion and Non-Recursive: Factorial, Fibonacci, GCD.

4. a). Recursion and Non-Recursive Factorial?

Aim:

To find factorial of a given number using recursion. For input & output statements we include the

header file <stdio.h> and for clear the screen include the <conio.h>.

Description:

Recursion is the process of repeating items in a self-similar way. The C programming language

supports recursion, i.e., a function to call itself. But while using recursion, programmers need to be

careful to define an exit condition from the function, otherwise it will go into an infinite loop.

Algorithm:

Step 1: Start

Step 2: Read ‘n’

Step 3: a=recfactorial(n)

Step 4: if ‘x’ is equal to zero then return 1 else

Step 5: f = x*recfactorial(x-1) and return value of ‘f’

Step 6: Print “recfactorial”

Step 7: b=nonrecfactorial(n)

Step 8: Initialize ‘f’ to one

Step 9: If i<=x then f=f*I until i<=n

Step 10: End for and return ‘f’

Step 11: Print “nonrecfactorial”

Step 12: Exit

Step 13: Stop

Program:

#include <stdio.h>

#include <conio.h>

void main()

{

int n, a, b;

clrscr();

printf("Enter any number\n");

scanf("%d", &n);

a = recfactorial(n);

printf("The factorial of a given number using recursion is %d \n", a);

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page25

b = nonrecfactorial(n);

printf("The factorial of a given number using nonrecursion is %d ", b);

getch();

}

int recfactorial(int x)

{

int f;

if(x == 0)

{

return(1);

}

else

{

f = x * recfactorial(x - 1);

return(f);

}

}

int nonrecfactorial(int x)

{

int i, f = 1;

for(i = 1;i <= x; i++)

{

f = f * i;

}

return(f);

}

Expected Output:

Enter any number

5

The factorial of a given number using recursion is 120

The factorial of a given number using nonrecursion is 120

4. b). Recursive and Non-Recursive: Fibonacci

Aim:

To print fibonacci series using recursion. For input & output statements we include the header file
<stdio.h> and for clear the screen include the <conio.h>.

Description:

The Fibonacci Sequence is the series of numbers:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

The next number is found by adding up the two numbers before it:

• the 2 is found by adding the two numbers before it (1+1),

• the 3 is found by adding the two numbers before it (1+2), • the 5 is (2+3),

• and so on!

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page26

Algorithm:

Step 1: Start

Step 2: Read n

Step 3: a=0, b=1

Step 4: write a, b

Step 5: c= a + b

Step 6: write c

Step 7: a=b

Step 8: b=c

Step 9: n--

Step 10: Repeat Steps 5 to 9 until n>0

Step 11: Stop

 Recursive Program:

#include<stdio.h> #include<conio.h>

void fibonacci(int);

void main()

{ int k, n;

long int i = 0, j = 1, f;

clrscr();

printf("Enter the range of the Fibonacci series: \n");

scanf("%d", &n); printf("Fibonacci Series: \n");

printf("%2d %2d ", i, j); fibonacci(n); getch();

}

void fibonacci(int n)

{ static long int first = 0, second = 1, sum; if(n

> 0)

{ sum = first + second; first

= second; second =

sum; printf("%ld ",

sum); fibonacci(n-);

}

}

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page27

Expected Output:

Enter the range of the Fibonacci series:10

Fibonacci Series:0 1 1 2 3 5 8 13 21 34 55 89

Non-Recursive Program:

#include <stdio.h>

int main()

{

int i, n, firstTerm=0, secondTerm=1, sum=0;

printf("\nEnter number of terms required in Fibonacci Series: ");

scanf("%d",&n);

// Showing the first two term of the Fibonacci Series

printf("\nFibonacci Series is:\n\n\n %d %d ", firstTerm, secondTerm);

//start i =2

i=2;

//i starts from 2, as the first two terms of the series have already been shown

while (i<n)

{

sum=firstTerm+secondTerm;

firstTerm=secondTerm;

secondTerm=sum;

++i;

printf("%d ",sum);

}

return 0;

}

Expected Output:

Enter number of terms required in Fibonacci Series: 8

Fibonacci Series is:

0 1 1 2 3 5 8 13

4. c). Recursive and Non-Recursive GCD

Aim:

To find gcd of a number using recursion. For input & output statements we include the header file

<stdio.h> and for clear the screen include the <conio.h>.

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page28

Description:

The GCD of two numbers in C, i.e., integer 8 and 12 is 4 because, both 8 and 12 are divisible by 1, 2,

and 4 (the remainder is 0) and the largest positive integer among the factors 1, 2, and 4 is 4. GCD of

two numbers in the C program allows the user to enter two positive integer values. Then, we are going

to calculate the Highest Common Factor of those two values.

Algorithm :

Step 1: Start

Step 2: Read ‘a’ and ‘b’

Step 3: Call gcdrecursive(n,m)

Step 4: If n>m then return gcdrecursive(n,m)

Step 5: If n is equal to zero return value of ‘m’ else

Step 6: Return the value of gcdrecursive(n,m%n)

Step 7: Print ‘a’, ‘b’ and gcdrecursive(a,b)

Step 8: Call gcdnonrecursive(p,q)

Step 9: remainder=p-(p/q*q)

Step 10: If remainder is zero then return value of ‘q’ else

Step 11: Call gcdrecursive(q,remainder)

Step 12: Print ‘a’, ‘b’ and gcdnonrecursive(a,b)

Step 13: Exit

Step 14: Stop

Program:

#include <stdio.h>

#include <conio.h>

void main()

{

int a, b, c, d;

clrscr();

printf("Enter two numbers a,

b\n");

scanf("%d%d", &a, &b);

c = recgcd(a, b);

printf("The gcd of two

numbers using

recursion is %d\n", c);

d = nonrecgcd(a, b);

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page29

printf("The gcd of two

numbers using

nonrecursion is %d",

d);

getch();

}

int recgcd(int x, int y)

{

if(y == 0)

{

return(x);

}

else

{

return(recgcd(y, x % y));

}

}

int nonrecgcd(int x, int y)

{

int z;

while(x % y != 0)

{

z = x % y;

x = y;

y = z;

}

return(y);

}

Expected Output:

Enter two numbers a, b

3 6

The gcd of two numbers using recursion is 3

The gcd of two numbers using nonrecursion is 3

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page30

PROGRAM 5. Matrix Addition and Multiplication using Arrays

5. a). Matrix Addition using Arrays

Aim:

To perform addition of two matrices. For input & output statements we include the header file

<stdio.h> and for clear the screen include the <conio.h>.

Description:

Array:- An array is defined as an ordered set of similar data items. All the data items of an array are

stored in consecutive memory locations in RAM. The elements of an array are of same data type and

each item can be accessed using the same name.

Declaration of an array:- We know that all the variables are declared before the are used in the

program. Similarly, an array must be declared before it is used. During declaration, the size of the

array has to be specified. The size used during declaration of the array informs the compiler to allocate

and reserve the specified memory locations.

Syntax:- data_type array_name[n]; where, n is the number of

data items (or) index(or) dimension.

0 to (n-1) is the range of

array. Ex: int a[5]; float

x[10];

Algorithm:

Step 1: Start the process.

Step 2: Read the values for m,n,p,q.

Step 3: If(m!=p || n!=q) then goto step 4 else goto step 6.

Step 4: Print ‘addition is not possible’. Step

5: Initialize I=0,j=0.

Step 6: If(I<m) then goto step 7.

Step 7: If(j<n)then goto step 8.

Step 8: Read a[I][j] goto step 9.

Step 9: Set I=I+1,j=j+1.

Step 10: If(I<p) then goto step 11.

Step 11: If(j<q)then goto step 12.

Step 12: Read b[I][j] goto step 9.

Step 13: Compute & set c[i][j] = a[i][j] + b[i][j].

Step 14: Display the value of c[I][j] goto step 9.

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page31

Step 15: Stop the process.

Program:

#include<stdio.h>

#include<conio.h> void

main()

{ int a[5][5], b[5][5], c[5][5], i, j, n, m, p, q; clrscr(); printf("Enter

first matrix size: \n"); scanf("%d%d", &m, &n);

printf("Enter second matrix size: \n"); scanf("%d%d", &p,

&q); if(m != p || n != q) printf("Size mismatch, Addition is

not possible \n");

else

{ printf("Enter first matrix elements: \n"); for(i

= 0;i < m;i++) for(j = 0;j < n;j++)

scanf("%d", &a[i][j]);

printf("Enter second matrix elements: \n");

for(i = 0;i < p;i++) for(j = 0;j <

q;j++) scanf("%d", &b[i][j]);

printf("Addition of two Matrices is \n");

for(i = 0; < m;i++)

{ for(j = 0;j < n;j++) c[i][j] = a[i][j] +

b[i][j];

}

for(i = 0;i < m;i++)

{ for(j = 0;j < n;j++) printf("%4d",

c[i][j]);

printf("\n");

}

}

getch();

}

Expected Output 1:

Enter first matrix size: 2

3

Enter second matrix size: 2

3

Enter first matrix elements: 1

2

3

4

5

6

Enter second matrix elements: 6

5

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page32

4

3

2

1

Addition of two Matrices is: 7 7 7

 7 7 7

Expected Output 2:

Enter first matrix size: 2

 3

Enter second matrix size: 4
 3

Size mismatch, Addition is not possible

5. b). Matrix Multiplication using Arrays

Aim:

To multiply two matrices using arrays. For input & output statements we include the header

file <stdio.h> and for clear the screen include the <conio.h>.

Algorithm:

Step 1: Start the process.

Step 2: Read the values for m,n,p,q.

Step 3: If(n!=p) then goto step 4 else goto step 6.

Step 4: Print ‘multiplication is not possible’. Step

5: Initialize I=0,j=0.

Step 6: If(I<m) then goto step 7.

Step 7: If(j<n)then goto step 8.

Step 8: Read a[I][j] goto step 9.

Step 9: Set I=I+1,j=j+1.

Step 10: If(I<p) then goto step 11.

Step 11: If(j<q)then goto step 12.

Step 12: Read b[I][j] goto step 9.

Step 13: If((I<m) &&(j<q))then set c[I][j]=0 else goto step 9.

Step 14: Compute & set c[i][j] = c[I][j]+ a[i][k] * b[k][j].

Step 15: Diplay the value of c[I][j] goto step 9.

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page33

Step 16: Stop the process.

Program :

#include<stdio.h>

#include<conio.h> void

main()

{ int a[5][5], b[5][5], c[5][5], i, j, n, m, p, q;

clrscr();

printf("Enter first matrix size: \n"); scanf("%d%d", &m, &n);

printf("Enter second matrix size: \n"); scanf("%d%d", &p, &q);

if(n != p) printf("Not compatible, Multiplication is not possible

\n");

else

{ printf("Enter first matrix elements: \n"); for(i

= 0;i < m; i++) for(j = 0;j < n; j++)

scanf("%d", &a[i][j]);

printf("Enter second matrix elements: \n");

for(i = 0;i < p;i++) for(j = 0;j <

q; j++) scanf("%d",

&b[i][j]);

printf("Product of two Matrices is \n");

for(i = 0;i < m; i++)

{ for(j = 0;j < q;j++)

{ c[i][j] = 0; for(k = 0;k < n;k++)

c[i][j] += a[i][k] * b[k][j];

}

}

for(i = 0;i < m;i++)

{ for(j = 0;j < q;j++)

printf("%4d", c[i][j]);

printf("\n");

}

}

getch(); }

Expected Output 1:

Enter first matrix size: 2

3

Enter second matrix size: 4

3

Not compatible, Multiplication is not possible

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page34

Expected Output 2:

Enter first matrix size: 2

 3

Enter second matrix size: 3

 1

Enter first matrix elements: 1

 2

 3

 4

 5
 6

Enter second matrix elements: 1

2

3

Product of two Matrices is: 14

32

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page35

Program on Linear Search and Binary Search using Recursive and Non – Recursive

Procedures

6. a). Program on Linear Search using Recursive Procedure?

Aim:

To implement linear search using recursive procedure. For input & output statements we include the

header file <stdio.h> and for clear the screen include the <conio.h>.

Algorithm:

Step 1: Start the process.

Step 2: Read n.

Step 3: Set i=0.

Step 4: If(i<n) then goto step 5 else goto 7.

Step 5: Read a[i].

Step 6: Set i=i+1 and goto step 4.

Step 7: Read ele.

Step 8: If(ele==a[i]) then set check=1 goto step 9 else goto step 10.

Step 9: If(check) then write element is found else write element not found.

Step 10: Stop the process.

Program:

#include<stdio.h> #include<conio.h>

int linear(int[], int, int);

void main()

{ int a[100], n, i, x;

clrscr();

printf("Enter Size: \n");

scanf("%d", &n);

printf("Enter %d elements: \n", n);

for(i = 0;i < n;i++)

scanf("%d", &a[i]);

printf("Enter element to search: \n");

scanf("%d", &x);

i=linear(a, n-1, x);

if(i != -1) printf("The element %d found at %d location", x,

i); else printf("The element %d is not found", x);

getch();

}

int linear(int a[100], int n, int x)

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page36

{ if(n<= 0) return -1; if(a[n] = = x)

return n; else return linear(a,

n-1, x);

}

Expected Output:

Enter Size: 5

Enter 5 elements: 25 30 12 54 60

Enter element to search: 60

The element 60 found at 4 location

6. b). Program on Linear Search using Non - Recursive Procedure?

Aim:

To implement linear search using non – recursive procedure. For input & output statements we

include the header file <stdio.h> and for clear the screen include the <conio.h>.

Description:

Linear search technique is also known as sequential search technique. The linear search is

a method of searching an element in a list in sequence. In this method, the array is searched for the

required element from the beginning of the list/array or from the last element to first element of

array and continues until the item is found or the entire list/array has been searched. Algorithm:

X is an array with n elements. This algorithm search for an item and finds

the location of item in array X.

Step 1: Start

Step 2: Read n,loc=-1

Step 3: Read array elements

Step 4: Enter element to be searched

Step 5: Call function

1: Repeat Step 4, for i=0 to n-1

2: [Search for an item in the array X]

If (ele=a[i])

3: Begin

loc=i

break

endif end

for

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page37

4: if (loc>0)

Display message “Search is successful and element is found at location:

loc” and Exit

5: else

Display the message “Search Unsuccessful” and exit.

Step 6: Stop

Program:

#include<stdio.h>

#include<conio.h> void

main()

{ int a[20], i, n, x, xloc = -1;

clrscr();

printf("Enter array size: \n");

scanf("%d", &n);

printf("Enter any %d elements: \n", n);

for(i=0;i<n;i++) scanf("%d", &a[i]);

printf("Enter the element you want to search for \n");

scanf("%d", &x); for(i = 0;i < n;i++)

{ if(a[i] = = x)

{ xloc = i;

break;

}

}

if(xloc = = -1) printf("%d is not found in the array \n",

x); else printf("%d is found at location %d \n", x,

xloc); getch();

}

Expected Output 1:

Enter array size 6

Enter any 6 elements 78 45 67 23 14 49

Enter the element you want to search for 23

23 is found at location 3

Expected Output 2:

Enter array size 5

Enter any 5 elements 1 2 34 5 6

Enter the element you want to search for 89

89 is not found in the array

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page38

6. c). Program on Binary Search using Recursive Procedure?

Aim:

To implement binary search using recursive procedure. For input & output statements we include

the header file <stdio.h> and for clear the screen include the <conio.h>.

Description:

Binary search is quicker than the linear search. However, it cannot be applied on unsorted data

structure. The binary search is based on the approach divide-and-conquer. The binary search starts

by testing the data in the middle element of the array. This determines target is whether in the first

half or second half. If target is in first half, we do not need to check the second half and if it is in

second half no need to check in first half. Similarly we repeat this process until we find target in the

list or not found from the list. Here we need 3 variables to identify first, last and middle elements.

To implement binary search method, the elements must be in sorted order. Search is performed as

follows:

• The key is compared with item in the middle position of an array

• If the key matches with item, return it and stop

• If the key is less than mid positioned item, then the item to be found must be in first half of

array, otherwise it must be in second half of array.

• Repeat the procedure for lower (or upper half) of array until the element is found.

Algorithm:

Step 1: Start the process.

Step 2: Read n.

Step 3: Set i=0.

Step 4: If(i<n) then goto step 5 else goto 7.

Step 5: Read a[i].

Step 6: Set i=i+1 and goto step 4.

Step 7: Read ele.

Step 8: Set low=0 high=n-1 and check=0.

Step 9: If(low<=high) then goto step 10 else goto step 14.

Step 10: Set mid=(low+high)/2.

Step 11: If(ele==a[mid-1]) then set check=1 goto step else goto STEP 12.

Step 12: If(ele<a[mid-1]) then set high=mid-1 else goto step 13.

Step 13: If(ele>a[mid-1]) then set low=mid+1.

Step 14: If(check) then write element is found else write element not found.

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page39

Step 15: Stop the process.

Program:

#include<stdio.h>

#include<stdlib.h>

#include<conio.h> #define

size 10

int binary(int[], int, int, int);

void main()

{ int n, i, key, position;

int low, high, list[size];

clrscr();

printf("\nEnter the total number of elements: \n");

scanf("%d", &n);

printf("Enter the elements of list: \n"); for(i

= 0; i < num; i++)

{ scanf("%d", &list[i]);

} low = 0; high

= num - 1;

printf("Enter element to be searched: \n");

scanf("%d", &key);

position = binary(list, key, low, high); if(position

!= -1)

{ printf("Number present at %d \n", position);

} else printf("The number is not present in the list \n");

getch();

}

int binary(int a[], int x, int low, int high)

{ int mid; if (low > high) return -1;

mid = (low + high) / 2; if (x =

= a[mid])

{ return mid;

}

else if (x < a[mid])

{ binary(a, x, low, mid - 1);

}

else

{ binary(a, x, mid + 1, high); }

}

Expected Output:

Enter the total number of elements: 5

Enter the elements of list: 11 22 33 44 55

Enter element to be searched: 33

Number present at 2

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page40

6. d). Program on Binary Search using Non - Recursive Procedure?

Aim:

To implement binary search using non – recursive procedure. For input & output statements we

include the header file <stdio.h> and for clear the screen include the <conio.h>.

Algorithm:

X is sorted array. The lb and ub are lower bounds and upper bounds of segment. This

algorithm search for an item and finds the location of item in array X.

Step 1: Start

Step 2: [Initialize variables]

Set beg=0, end=n-1, flag=0

Step 3: Repeat Steps 3 and 4 while beg<=end Step

4: [Compute location of middle element]

mid=(beg+end)/2

Step 5: [compare the element]

if x[mid] > item, then

set end=mid-1

else if x[mid] < item, then

et beg= mid+1

else

set flag=1

display the message “Search is successful” and exit.

Step 6: If flag=0 then

display the message “Search Unsuccessful” and exit.

Step 7: Stop

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page41

Program:

#include<stdio.h>

#include<conio.h> void

main()

{ int a[20], i, n, x, xloc = -1, low, high, mid;

clrscr();

printf("Enter array size: \n");

scanf("%d", &n);

printf("Enter any %d elements in the sorted order: \n",n);

for(i = 0;i < n;i++) scanf("%d", &a[i]);

printf("Enter the element you want to search for \n");

scanf("%d", &x);

low = 0; high = n-

1; while(low <=

high)

{ mid = (low+high) / 2;

if(a[mid] = = x)

{ xloc = mid;

break;

} else if(x < a[mid])

high = mid - 1;

else low = mid + 1;

} if(xloc = = -1) printf("%d is not found in the

array \n", x);

else printf("%d is found at location %d \n", x, xloc);

getch();

}

Expected Output 1:

Enter array size: 6

Enter any 6 elements: 78 45 67 23 14 49

Enter the element you want to search for 23

23 is found at location 3

Expected Output 2:

Enter array size: 5

Enter any 5 elements: 1 2 34 5 6

Enter the element you want to search for 89

89 is not found in the array

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page42

PROGRAM 7. Bubble Sort, Selection Sort

7. a). Bubble Sort

Aim:

To implement bubble sort. For input & output statements we include the header file <stdio.h> and

for clear the screen include the <conio.h>.

Description:

In bubble sort method the list is divided into two sub-lists sorted and unsorted. The smallest element

is bubbled from unsorted sub-list. After moving the smallest element the imaginary wall moves one

element ahead. The bubble sort was originally written to bubble up the highest element in the list. But

there is no difference whether highest / lowest element is bubbled. This method is easy to understand

but time consuming. In this type, two successive elements are compared and swapping is done. Thus,

step-by-step entire array elements are checked. Given a list of ‘n’ elements the bubble sort requires

up to n-1 passes to sort the data.

Algorithm:

Step 1: Start the process.

Step 2: Read n.

Step 3: Set i=0.

Step 4: If(i<n) then goto step 5 else goto step 7.

Step 5: Read a[i].

Step 6: Set i=i+1 and goto step 4.

Step 7: Set i=0.

Step 8: If(i<n-1) then goto step 9.

Step 9: Set j=i+1 then goto step 10 else go to step 14.

Step 10: If(j<n) then goto step 11else goto step 14.

Step 11: If(a[i]>a[j]) then goto step 12.

Step 12: Set temp=a[i].

a[i]=a[j]. a[j]=temp.

Step 13: Set j=j+1 and goto step 10.

Step 14: Set i=i+1 and goto step 8.

Step 15: Set i=0.

Step 16: If(i<n) then goto step 17 else goto step 19.

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page43

Step 17: Write a[i].

Step 18: Set i=i+1 and goto step 16.

Step 19: Stop the process.

Program:

#include<stdio.h>

#include<conio.h> void

main()

{ int a[20], i, j, n, temp; clrscr(); printf("Enter

array size: \n"); scanf("%d", &n);

printf("Enter any %d elements: \n", n);

for(i = 0;i < n;i++)

scanf("%d", &a[i]);

for(i = 1;i <= n-1;i++)

{ for(j = 0;j < n-i;j++)

{ if(a[j] > a[j+1])

{ temp = a[j]; a[j] =

a[j+1]; a[j+1]

= temp;

}

}

}

printf("After sorting, the element are

\n"); for(i = 0;i < n;i++) printf("%4d",

a[i]); getch();

}

Expected Output:

Enter array size: 6

Enter any 6 elements: 78 95 62 30 12 39

After sorting, the element are 12 30 39 62 78 95

7. b). Selection Sort?

Aim:

To implement selection sort. For input & output statements we include the header file <stdio.h> and

for clear the screen include the <conio.h>.

Description:

In selection sort the list is divided into two sub-lists sorted and unsorted. These two lists are divided

by imaginary wall. We find a smallest element from unsorted sub-list and swap it to the beginning.

And the wall moves one element ahead, as the sorted list is increases and unsorted list is decreases.

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page44

Assume that we have a list on n elements. By applying selection sort, the first element is compared

with all remaining (n-1) elements. The smallest element is placed at the first location. Again, the

second element is compared with remaining (n-1) elements. At the time of comparison, the smaller

element is swapped with larger element. Similarly, entire array is checked for smallest element and

then swapping is done accordingly. Here we need n-1 passes or iterations to completely rearrange the

data

Algorithm:

Step 1: Start

Step 2: Read size of array ‘n’

Step 3: Read number of elements of an array ‘a[i]’

Step 4: Call ‘selection_sort()’ function

Step 5: for(i=0;i<n;i++)

Step 6: Equate ‘min’ to ‘i’

Step 7: for(j=i+1;j<n;j++)

Step 8: If ‘a[j]’ is greater than ‘a[min]’ then

Step 9: Equate ‘min’ to ‘j’

Step 10: End for

Step 11: ‘temp = a[i]’

Step 12: ‘a[i]=a[min]’

Step 13: ‘a[min]=temp’

Step 14: End for

Step 15: Print all the elements in the array ‘after sorting’

Step 16: Exit

Step 17: Stop

Program:

#include<stdio.h>

#include<conio.h> void

main()

{ int a[20], i, j, n, temp, maxloc, k; clrscr();

printf("Enter array size: \n");

scanf("%d", &n); printf("Enter any

%d elements: \n", n);

for(i = 0;i < n;i++)

scanf("%d", &a[i]);

for(i = 0;i < n-1;i++)

{ maxloc = 0; for(j = 0;j <= (n-

1-i);j++)

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page45

{ if(a[j] > a[maxloc])

maxloc = j;

} temp = a[n-1-i];

a[n-1-i] =

a[maxloc];

a[maxloc] = temp;

}

printf("After sorting, the element are

\n"); for(i = 0;i < n;i++) printf("%4d",

a[i]);

getch();

}

Expected Output:

Enter array size: 6

Enter any 6 elements: 78 95 62 30 12 39

After sorting, the element are 12 30 39 62 78 95

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page46

PROGRAM 8. Programs on pointers: pointer to arrays, pointer to functions

8.a). Pointer to Array

Aim:

To print address of each individual element of an array. For input & output statements we

include the header file <stdio.h>, for clear the screen include the <conio.h> Description:

Pointer is a user defined data type that creates special types of variables which can hold the address

of primitive data type like char, int, float, double or user defined data type like function, pointer etc.

or derived data type like array, structure, union, enum.

Examples:

int *ptr; int (*ptr)();

int (*ptr)[2];

Benefits of using pointers are:-

1) Pointers are more efficient in handling arrays and data tables.

2) Pointers can be used to return multiple values from a function via function arguments.

3) The use of pointer arrays to character strings results in saving of data storage space in

memory.

4) Pointers allow C to support dynamic memory management.

5) Pointers provide an efficient tool for manipulating dynamic data structures such as structures ,

linked lists , queues , stacks and trees.

6) Pointers reduce length and complexity of programs.

7) They increase the execution speed and thus reduce the program execution time.

Algorithm:

Step 1: Start

Step 2: Declare an array

Step 3: enter the number of elements

Step 4: Print the address of each element in the array Step

5: Stop

Program :

#include<stdio.h>

int main()

{

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page47

int

x[4];

int i;

for(i = 0; i < 4; ++i)

{ printf(“&x[%d] = %u\n”,I,

&x[i]);

}

printf("Address of array x: %u", x);

return 0;

}

Expected Output:

&x[0] = 1450734448

&x[1] = 1450734452

&x[2] = 1450734456

&x[3] = 1450734460

Address of array x: 1450734448

8. b). Pointer to Functions:

Aim:

To implement pointer to Functions. For input & output statements we include the header file

<stdio.h>, for clear the screen include the <conio.h>

Description:

Pointers can be used to pass addresses of variables to called functions, thus allowing the called

function to alter the values stored there.

Passing only the copy of values to the called function is known as "call by value". Instead of passing

the values of the variables to the called function, we pass their addresses, so that the called function

can change the values stored in the calling routine. This is known as "call by reference", since we

are referencing the variables.

Here the addresses of actual arguments in the calling function are copied into formal arguments of

the called function. Here The formal parameters should be declared as pointer variables to store the

address.

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page48

Algorithm:

Step 1: Start

Step 2: Declare a function to swap two numbers

Step 3: Enter two integer numbers to be swapped

Step 4: return to main function Step

5: End

Program:

#include <stdio.h> void

swap(int *n1, int *n2); int

main()

{ int num1 = 5, num2 = 10;

swap(&num1, &num2);

printf("num1 = %d\n", num1);

printf("num2 = %d", num2);

return 0;

}

void swap(int* n1, int* n2)

{

int temp;

temp =*n1;

*n1 = *n2;

*n2 = temp;

}

Expected Output:

num1 = 10

num2 = 5

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page49

PROGRAM 9. String Manipulations, Structures and Unions

9.a). Find the Length of a given String using Library Function?

Aim:

To find the length of a given string using library function. For input & output statements we include

the header file <stdio.h> and for clear the screen include the <conio.h>.

Description:

C Strings:- In C language a string is group of characters (or) array of characters, which is

terminated by delimiter \0 (null). Thus, C uses variable-length delimited strings in programs.

Declaring Strings:- Since strings are group of characters, generally we use the structure to store

these characters is a character array.

Syntax:- char string_name[size];

The size determines the number of characters in the string name. Ex:-

char city[10];

Char name[30];

Initializing strings:-

There are several methods to initialize values for string variables.

Ex:- char city[8]=”NEWYORK”;

Char city[8]={‘N’,’E’,’W’,’Y’,’O’,’R’,’K’,’\0’};

The string city size is 8 but it contains 7 characters and one character space is for NULL terminator.

Storing strings in memory:-

In C a string is stored in an array of characters and terminated by \0 (null).

A string is stored in array, the name of the string is a pointer to the beginning of the string.

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page50

The character requires only one memory location.

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page51

If we use one-character string it requires two locations. The difference shown below,

The difference between array & string shown below,

Because strings are variable-length structure, we must provide enough room for maximum-length

string to store and one byte for delimiter.

Program:

#include<stdio.h>

#include<conio.h> void

main()

{ char arr[] = "Methodist College" ;

int len1, len2 ; clrscr(); len1 =

strlen (arr) ; len2 = strlen

("Engineerimg") ;

printf ("String = %s length = %d \n", arr, len1) ; printf

(“String = %s length = %d \n", "Engineerimg", len2) ;

getch();

}

Expected Output:

string = Methodist College length = 17 string

= Engineerimg length = 11

9. b). Copy the given String to another String using Library Function?

Aim:

To copy the given string to another string using library function. For input & output statements we

include the header file <stdio.h> and for clear the screen include the <conio.h>.

Program:

#include<stdio.h>

#include<conio.h> void

main()

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page52

{ char source[] = "Methodist College of Engineering & Technology" ; char

target[20] ;

cltscr();

strcpy(target, source) ; printf("Source

String = %s \n", source) ; printf("Target

String = %s \n", target) ; getch();

}

Expected Output:

Source String = Methodist College of Engineering & Technology Target

String = Methodist College of Engineering & Technology

9. c). Appending one String at the end of another String using Library Function?

Aim:

To appends one string at the end of another string using library function. For input & output

statements we include the header file <stdio.h> and for clear the screen include the <conio.h>.

Program:

#include<stdio.h>

#include<conio.h> void

main()

{ char source[] = "Methodist College";

char target[30] = “Welcome to”;

cltscr();

strcat (target, source) ; printf("Source

String = %s \n", source); printf("Target

String = %2s \n", target); getch();

}

Expected Output:

Source String = Methodist College

Target String = Welcome to Methodist College

9. d). Reverse the Contents of the given String using Library Function?

Aim:

To reverse the contents of the given string using library function. For input & output statements we

include the header file <stdio.h>, for clear the screen include the <conio.h> and for string functions

include <string.h>.

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page53

Program:

#include<stdio.h>

#include<conio.h>

#include<string.h> void

main()

{ char a[20]; cltscr(); printf(“Enter

any string: \n”); gets(a);

strrev(a); printf(“Reverse

string: \n”, a); getch();

}

Expected Output:

Enter any string: methodist

Reverse string: tsidohtem

9. e). Compare the Contents of given two Strings using Library Function?

Aim:

To compare the contents of the given two strings using library function. For input & output

statements we include the header file <stdio.h> and for clear the screen include the <conio.h>.

Program:

#include<stdio.h>

#include<conio.h> void

main()

{ char string1[] = "Methodist";

char string2[] = “MCET”;

int i, j, k;

cltscr();

i = strcmp(string1, “Methodist”); j

= strcmp(string1, string2);

k = strcmp(string1, “Methodist College”);

printf("i = %d \n", i);

printf("j = %d \n", j);

printf("k = %d \n", k);

getch();

}

Expected Output:

i = 0 j = 34 k

= -32

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page54

9. f). Abbreviate the Contents of given Strings using Library Function?

Aim:

To abbreviate the contents of the given string using library function. For input & output statements

we include the header file <stdio.h> and for clear the screen include the <conio.h>.

Algorithm:

Step 1: Start

Step 2: Declare a file pointer fp, ch

Step 2: Attach filename using fp=fopen(“filename”,”r+”)

Step 3: Read n (no.of characters from given file until end of the file)

Step 4: Print the characters

Step5: Close file pointer

Step 6: Stop

Program:

#include<stdio.h>

#include<conio.h> void

main()

{ char s[100];

int i;

clrscr();

printf("Enter a String:

\n"); gets(s); i = 0;

while(s[i] = = ' ')

i++; putchar(s[i]);

putchar(' ');

while(s[i] != '\0')

{ if(s[i] = = ' ' && s[i+1] != ' ')

{ putchar(s[i+1]);

putchar(' ');

}

i++;

} getch();

}

Expected Output:

Enter a String: Methodist College Engineering Technology

M C E T

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page55

9. g). Print employees name and gross salary using structures.

Aim:

To print employees name and gross salary using structures.

Description:

A structure is a collection of one or more variables of different data types, grouped together under a

single name. By using structures variables, arrays, pointers etc can be grouped together.

Structures can be declared using two methods as follows:

(i) Tagged Structure:

The structure definition associated with the structure name is referred as tagged structure. It does

not create an instance of a structure and does not allocate any memory.

(ii) Type-defined structures:-

The structure definition associated with the keyword typedef is called type-defined structure.

General Syntax:

struct tag_name {

type member1;

type member2;

/* declare as many members as desired, but the entire structure size must be known to the

compiler. */

};

Algorithm:

Step 1: Start

Step 2: Declare structure for employee details

Step 3: Read 100 employee details

Step 4: Repeat loop 100 employees and calculate gross salary of each employee

Step 5: Print each employee name and gross salary

Step 6: Stop

Program:

#include<stdio.h> struct

employee

{ char name[20];

float basic;

float da; float

gross;

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page56

}e[5];

void main()

{

int i;

for(i=0;i<5;i++)

scanf("%s%f",e[i].name,&e[i].basic);

for(i=0;i<5;i++)

{ e[i].da=52.0/100*e[i].basic;

e[i].gross=e[i].da+e[i].basic

;

printf("\n name=%s gross=%f",e[i].name,e[i].gross); }

}

Expected Output:

Enter name and basic

A 2300

B 32000

C 15000

D12000

F 22000

Name=A gross 3496.0000

Name =B gross = 48640.0000

Name = C gross = 22800.0000

Name = D gross = 18240.0000

Name = E gross = 334400.0000

9. h). Display your present address using union

Aim:

To display your present address using union

Description:

To define a union, you must use the union statement in the same way as you did while defining a

structure. The union statement defines a new data type with more than one member for your

program. The format of the union statement is as follows

Syntax of Union union

[union tag] {

member definition;

member definition;

...

member definition;

} [one or more union variables];

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page57

Algorithm:

Step 1: Start

Step 2: Declare union for address details

Step 3: Assign address to union

Step 4: Print union details

Step 5: Stop

Program:

#include<stdio.h>

#include<string.h>

union details

{ char name[20]; char

home_add[30]; char

hostel_add[30]; char

city[10]; char state[10];

int pincode; }a; void

main()

{ strcpy(a.name,"rama"); printf("\n

%s",a.name); strcpy(a.home_add,"1-

83/10,jublie hills"); printf("\n

%s",a.home_add);

strcpy(a.hostel_add,"mcet college");

printf("\n %s",a.hostel_add);

strcpy(a.city,"hyderabad"); printf("\n

%s",a.city); strcpy(a.state,"telangana");

printf("\n %s",a.state);

a.pincode=500043; printf("\n

%d",a.pincode); getch();

}

Expected Output:

rama

1-83/10, jublie hills

mcet college

Hyderabad

Telangana

500043

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page58

PROGRAM 10. File Handling Programs.

10. a). Program to create a file?

Aim:

To create a file. For input & output statements we include the header file <stdio.h> and for clear

the screen include the <conio.h>.

Description:

In order to perform the file operations in C we must use the high level I/O operation functions

which are in C standard I/O library.

i) fopen():

The function fopen is one of the Standard Library functions and returns a file pointer which you

use to refer to the file you have opened e.g.

fp = fopen(“prog.c”, “r”) ;

The above statement opens a file called prog.c for reading and associates the file pointer fp with

the file.When we wish to access this file for I/O, we use the file pointer variable fp to refer to it.

You can have up to about 20 files open in your program - you need one file pointer for each file you

intend to use.

ii) fclose():

Closing a file ensures that all outstanding information associated with the file is flushed out from

the buffers and all links to the file are broken.

Another instance where we have to close a file is to reopen the same file in a different mode.

The I/O library supports the following function to do this:

fclose (file_pointer);

Where fp is the file pointer returned by the call to fopen ().

fclose () returns 0 on success (or) -1 on error.

Once a file is closed, its file pointer can be reused for another file.

iii) getc():

getc() is used to read a character from a file that has been opened in a read mode. For example

the statement c=getc(fp);

would read a character from the file whose file pointer is fp. The file pointer moves by one

character for every operation of getc(). The getc() will return an end-of –marker EOF, when an end

of file has been reached.

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page59

iv) putc(): putc(c,fp);

IT writes the character contained in the character variable c to the file associated with the FILE

pointer fp. similarly like getc() put c() also will return an end-of –marker EOF, when an end of file

has been reached.

v) fprintf() & fscanf():

In order to handle a group of mixed data simultaneously there are two functions that are fprintf()

and fscanf().These two functions are identical to printf and scanf fuctions,except they work on files.

The first argument of these functions is a file pointer which specifies the file to be used . the general

form of fprintf is

fprintf(fp,”control string”,list);

where fp is a file pointer associated with a file that has been opened for writing . the control string

contains output specifications for the items in the list. .

fprintf(fp,”%s %f %d”,name,6.6,age);

Like fprintf fscanf() also contains the same syntax which is used to read a no of values from a file.

fscantf(fp,”control string”,list);

like scanf , fscanf also returns the number number of items that are successfully read.when the end

of file is it returns the value EOF.

vi) getw() &putw():

The getw() and putw() are integer oriented functions .They are similar to the getc() and putc()

functions and are used to read and write integer values . These functions would be useful when we

deal with only integer data. The general form of

putw(integer,fp); getw(fp);

vii) ftell:-

ftell takes a file pointer and returns a number of type long, that corresponds to the current position.

This function is useful in saving the current position of the file,which can be later used in the

program.

Syntax: N=ftell(fp);

N would give the Relative offset (In bytes) of the current position. This means that already n bytes

have a been read or written.

viii) rewind:-

It takes a file pointer and resets the position of to the start of the file.

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page60

Syntax: rewind(fp);

n=ftell(fp);

would assign 0 to n because the file position has been set to start of the file by rewind. The first

byte in the file is numbered 0,second as 1, so on. This function helps in reading the file more than

once, without having to close and open the file.

xi) fseek:-

fseek function is used to move the file pointer to a desired location in the file.

Syntax: fseek(file ptr,offset,position);

is a pointer to the file concerned, offset is a number or variable of type file pointers.long,and

position is an integer number. The offset specifies the number of

positions(Bytes) to be moved le from the location specified by the position.

Algorithm:

Step 1: Start

Step 2: Declare a file pointer fp, ch

Step 2: Attach filename using fp=fopen(“filename”,”r+”)

Step 3: Read n (no.of characters from given file until end of the file)

Step 4: Print the characters

Step5: Close file pointer

Step 6: Stop

Program:

#include<stdio.h>

#include<conio.h> void

main()

{

FILE *fp;

char ch;

clrscr();

fp = fopen("text.dat", "w"); printf("Enter

text, to stop press Ctrl – Z: \n");

while((ch = getchar()) != EOF)

{ fputc(ch,fp);

}

fclose(fp);

getch();

}

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page61

Expected Output:

Enter text, to stop press Ctrl-Z: This

is my first program in C language

to create a file.

Bye.

To see the contents of this file

open text.dat in any editor

program.

^Z

File Saved on disk text.dat:

This is my first program in C language

to create a file.

Bye.

To see the contents of this file

open text.dat in any editor

program.

10. b). Program to print the contents of the file on the monitor?

Aim:

To print the contents of the file on the monitor. For input & output statements we include the header

file <stdio.h> and for clear the screen include the <conio.h>.

Algorithm:

Step 1: Start

Step 2: Declare a file pointer fp, ch

Step 3: Attach filename using fp=fopen(“filename”,”r+”)

Step 4: Read n (no.of characters from given file until end of the file)

Step 5: Print the characters

Step 6: Close file pointer

Step 7: Stop

Program:

#include<stdio.h>

#include<conio.h> void

main()

{

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page62

FILE *fp;

char ch;

clrscr();

fp = fopen("text.dat", "r");

if(fp==NULL) printf("No such

file \n"); else

{ printf("File contents are: \n");

while(!feof(fp))

{

ch = fgetc(fp);

putchar(ch);

}

fclose(fp);

}

getch();

}

Expected Output 1:

Given text.dat File contents are:

This is my first program in C to

create a file with some text.

Bye

To see the contents of the file open text.dat in

any editor.

Expected Output 2: Given

example.dat

No such file

10. c). Program to Copy one File in to another?

Aim:

To copy one file into another. For input & output statements we include the header file <stdio.h>

and for clear the screen include the <conio.h>.

Algorithm:

Step 1: Start

Step 2: create two file pointers

Step 3: open first file in read mode

Step 4: open second file in write mode using another file pointer.

Step 5: If either of the two file pointers are NULL, then print unable to open file

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page63

Step 6: read the character from first file and convert it to uppercase and write that character

into second file

Step 7: repeat Step 6 till end of first file

Step 8: close both the files Step

9: Stop.

Program:

#include<stdio.h>

#include<conio.h> void

main()

{

FILE *fs, *ft ; char ch;

clrscr(); fs = fopen

("text.dat", "r"); if(fs ==

NULL)

{ puts ("Cannot open source file");

}

ft = fopen ("example.dat", "w");

if(ft == NULL)

{ puts("Cannot open target file");

fclose(fs);

} while

(1)

{ ch = fgetc (fs); if(ch

= = EOF)

break;

else

{ fputc (ch, ft); puts("File

copied");

}

} fclose

(fs);

fclose (ft);

getch();

}

Expected Output:

File copied

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page64

10 d) Finding the No. of Characters, Words and Lines of given Text File?

Aim:

To find the no. of characters, words and lines of given text file. For input & output statements we

include the header file <stdio.h> and for clear the screen include the <conio.h>.

Description:

Naming and opening a file: A name is given to the file used to store data. The file name is a string

of characters that make up a valid file name for operating system. It contains two parts. An optional

name and an optional period with extension.

Examples: Student.dat, file1.txt, marks.doc, palin.c.

The general formal of declaring and opening a file is

FILE *fp; //declaration

fp=fopen

(“filename”,”mode”); //ststement to open file.

Here FILE is data structures defined for files.

fp is a pointer to data type file. It acts as link between systems and program. Filename is the name

of the file.

Mode tells in which mode the file should be opened.

For reading data from file, Input functions used are (Input and output operations on files)

a) getc(); It is used to read characters from file that has been opened for read operation.

Syntax: C=gets (file pointer)

This statement reads a character from file pointed to by file pointer and assign to c. It returns an

end-of-file marker EOF, when end of file as been reached

b) fscanf(); This function is similar to that of scanf function except that it works on files.

Syntax: fscanf (fp, ”control string”, list);

Example : fscanf(f1,”%s%d”,str,&num);

The above statement reads string type data and integer types data from file.

c) getw(); This function reads an integer from file.

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page65

Syntax: getw (file pointer);

d) fgets(): This function reads a string from a file pointed by a file pointer. It also copies the

string to a memory location referred by an array.

Syntax: fgets(string,no of bytes,filepointer);

e) fread(): This function is used for reading an entire structure block from a given file.

Syntax: fread(&struct_name,sizeof(struct_name),1,filepointer);

Writing data to a file:

To write into a file, following C functions are used

a) putc(): This function writer a character to a file that has been opened in write mode.

Syntax: putc(variable,fp);

This statement writes the character contained in character variable c into a file whose pointer is fp.

b) fprintf(): This function performs function, similar to that of printf.

Syntax: fprintf(f1,”%s,%d”,str,num);

c) putw(): It writes an integer to a file.

Syntax: putw (variable, fp);

d) fputs(): This function writes a string into a file pointed by a file pointer.

Syntax: fputs(string,filepointer);

e) fwrite(): This function is used for writing an entire block structure to a given file. Syntax:

fwrite(&struct_name,sizeof(struct_name),1,filepointer);

Closing a file:

A file is closed as soon as all operations on it have been completed. Library function for closing a

file is fclose(file pointer);

Syntax: fclose(fp);

This statement closes a file pointed by file pointer fp. Or fcloseall(), to close all opened files at a

time.

Algorithm:

Step 1: Start

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page66

Step 2: Initialize str[100], i=0, l=0 and f=1

Step 3: Read string ‘str’

Step 4: for(i=0;str[i]!=’\0’;i++)

Step 5: Equate ‘l’ is equal to ‘l’ plus 1 until str[i]!=’\0’

Step 6: End for

Step 7: Print number of characters in the string

Step 8: for(i=0;i<=l-1;i++)

Step 9: if ‘str[i]’ is equal to space then increment ‘f’ by 1

Step 10: End for

Step 11: Print number of words in the string

Step 12: Exit

Step 13: Stop

Program:

#include<stdio.h>

#include<conio.h> void

main()

{ int noc = 0, now = 0, nol = 0;

FILE *fw,*fr; char

fname[20], ch; clrscr();

printf("Enter the source file name: \n");

gets(fname); fr =

fopen(fname, "r");

if(fr = = NULL)

{ printf("\n error \n");

exit(0); } ch = fgetc(fr);

while(ch != EOF)

{

noc++;

if(ch = = ' ');

now++;

if(ch = = '\n')

{ nol++;

now++;

} ch =

fgetc(fr);

}

fclose(fr);

printf("Total no. of character = %d \n", noc);

printf("Total no of words = %d \n", now);

printf("Total no of lines = %d \n", nol);

getch();

}

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page67

Expected Output:

Enter the source file name: namecount.c

Total no. of character = 488

Total no of words = 522

Total no of lines = 34

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page68

ADDITIONAL PROGRAMS

1. Aim: To read arguments at the command line and display it

Algorithm:

1. Start

2. Pass a to arguments argc and argv in main function

3. Check the condition argc equal to 2 then printf the argv[1] value

4. Else if argc is greter than 2 the print Too many arguments supplied

5. Else One argument expected

6. Stop

Program :

#<include stdio.h> #include<string.h>

void main(int argc,char *argv[])

{

int i;

printf("\n total no of

arguments=%d",argc);

for(i=0;i<argc;i++) printf("\n

args[%d]=%s",i,argv[i]);

}

Expected Output:

total no of arguments = 4

args[0] = c:\pathname

args[1] = ram args[2] =

ravi

args[3] = raj

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page69

2. Aim: To compute the volume for spheres of radius 5, 10 and 15 meters

Algorithm:

1. Start

2. Define PI constant value 3.14

3. Define macro function to pass a radius value as a argument

4. Call the macro function

5. Print the result

6. Stop

Program:

#include<stdio.h>

#include<math.h>

#define PI 3.142

#define volume(r) ((4/3.0)*PI*pow(r,3)) void

main()

{ int r; float v;

scanf("%d",&r);

v=volume(r);

printf("\n volume of the sphere v=%.3f",v);

}

Expected Output:

Volume of sphere 5 = 314.15

Volume of sphere 10 =1256.6000

Volume of sphere 15 = 2827.35000

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page70

3. Aim: To convert a Roman numeral to its decimal equivalent

 Algorithm:

1. Start

2. Read roman numbers

3. Repeat loop for all given roman letters and convert each letter into digit and add to

variable

4. Print the result

5. Stop

Program:

#include<stdio.h>

#include<string.h>

void main()

{ char a[10]; int

total[10],sum=0,i,l;

printf("\n enter a roman number: ");

gets(a); l=strlen(a); for(i=0;i<l;i++)

{ switch(a[i])

{ case 'M': total[i]=1000; break;

case 'D': total[i]=500; break;

case 'C': total[i]=100; break;

case 'L': total[i]=50; break;

case 'X': total[i]=10; break;

case 'I': total[i]=1; break;

}

sum=sum+total[i];

}

for(i=0;i<l-1;i++) if(total[i]<total[i+1])

sum=sum-2*total[i]; printf("\n the decimal

equivalent is %d",sum);

}

Expected Output:

enter a roman number: XVII

the decimal equivalent is 17

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page71

VIVA VOCE QUESTIONS

1. INTRODUCTION TO C

1) What is an algorithm?

2) What is a flowchart?

3) What are the characteristics of an algorithm?

4) What is a procedural oriented language?

5) How can u say C is a middle-level language?

6) What are the steps required to develop a C program?

7) What are the characteristics of C language?

8) What is difference between compiler and interpreter?

9) What is preprocessor directive?

10) When preprocessing is done?

11) Name some of the activities done at the time of preprocessing?

2. DATA TYPES AND OPERATORS

1) What is a C token?

2) What is a key word? List different keywords in C language?

3) What is a data type? Give different data types in C.

4) What is the use of typedef?

5) How to declare a constant in C?

6) What is the difference between a constant and a variable?

7) Give some examples of header files in C?

8) Why we include header files in a C program?

9) What are the different types of binary operators in C?

10) List different arithmetic operators and what is their precedence?

11) List different relational operators in C.

12) List different logical operators in C and give their precedence.

13) What is conditional operator? Write the syntax.

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page72

14) List different unary operators in C.

15) What is the associativity of assignment operator?

16) What is the use of sizeof operator?

20) What are shorthand assignment operators?

21) What is type casting?

22) List different bit-wise operators. What is the use of bit-wise operators?

3. CONTROL STRUCTURES

1) What are the different branch control statements in C language?

2) Is C a block structured language?

3) What is the meaning of block structured language?

4) What are the different loop control statements in C language?

5) What is the difference between while loop and do-while loop?

6) Draw the flowchart of while, do-while and for loop? 7) How many iterations occurs in the

following while loop:

while(1) { … }

8) How to swap two variables?

9) How to swap two variables without using a temporary variable?

10) What is a compound statement? Give an example.

11) Write the syntax of for loop.

12) How a for loop executes?

13) How many iterations occurs in the following for loop:

for(; ;) { … }

14) How a nested for loop executes?

15) Differentiate between a for loop and a while loop?

16) What is the purpose of break statement in a loop?

17) What is the purpose of continue statement in a loop?

18) What does exit() do?

Methodist College of Engineering & Technology
Department of Mechanical Engineering

BE III SEMESTER PROGRAMMING FOR PROBLEM SOLVING LAB MANUAL Page73

19) Write the syntax of switch statement.

20) Draw the flowchart of switch statement.

21) In switch control structure when default block is executed?

22) In switch control structure if there is no break statement in particular case block then

what happen?

23) Why the usage of goto control structure is not recommended in C?

24) Write the recurrence relation to find nth Fibonacci number.

25) Write the recurrence relation to find the factorial of a given number.

4. SORTING TECHNIQUES

1) How many number of comparisons required to sort n numbers using bubble sort?

2) When quick sort gives worst performance?

3) What are the properties of heap?

4) What is the time complexity of quick sort?

5) What is the worst case time complexity of quick sort?

6) What is the time complexity of bubble sort?

7) What is the time complexity of insertion sort?

5. SEARCHING TECHNIQUES

1) What are the different searching mechanisms?

2) If the file contains large number of records in sorted order based on a key, then which

searching technique is used to find a particular record efficiently?

3) Explain linear searching method.

4) Explain binary searching method.

5) What is the time complexity of linear search?

6) What is the time complexity of binary search?

OPEN ENDED PROGRAM

1. Write a C program for implementing Merge Sort

2. Write a C program for implementing Insertion sort

Estd: 2008

METHODIST
COLLEGE OF ENGINEERING & TECHNOLOGY
Approved by AICTE New Delhi | Affiliated to Osmania University, Hyderabad

Abids, Hyderabad, Telangana, 500001

	CONTENTS
	Learning Objectives
	1. Introduction
	2. Fundamentals of computer programming
	Language levels
	Table-1: World of programming languages.
	Operating System
	Program Execution
	Figure 1: Program development stages
	3. Introduction to C language
	History of C Language
	Features of C
	Figure 2: Features of C – at a glance
	1. Simple
	2. Portability
	3. Powerful
	4. Structure oriented
	5. Case sensitive
	6. Modularity
	7. Middle level language
	8. Syntax based language
	9. Efficient use of pointers
	10. Fast and Efficient
	11. Compiler based
	12. Platform independent
	c a Middle-Level Language
	Applications of C
	Structure of C program
	Figure 3: Structure of c program
	printf(“Fergusson College”); //Executable statement
	Fergusson College Problem solving process
	4. The algorithm
	Characteristics of an algorithm
	PROGRAM 1.
	Aim:
	Description:
	Program:
	Expected Output :
	1. b). Finding the roots of a given Quadratic equation?
	Program: (1)
	Expected Output 1:
	Expected Output 2:
	PROGRAM 2. Sin x and Cos x values using series expansion
	Description: (1)
	for(exp1;exp2;exp3) for-body next_statement;
	Program: (2)
	Expected Output:
	2. b). Cos x value using series expansion?
	Program: (3)
	Expected Output: (1)
	PROGRAM 3. Generating a Pascal Triangle and Pyramid of Numbers.
	Description: (2)
	Program: (4)
	Expected Output: (2)
	3. b). Generating a Pyramid of Numbers (Floyd’s Triangle)?
	Description: (3)
	Program: (5)
	Expected Output: (3)
	PROGRAM 4. Recursion and Non-Recursive: Factorial, Fibonacci, GCD.
	Description: (4)
	Program: (6)
	Expected Output: (4)
	4. b). Recursive and Non-Recursive: Fibonacci Aim:
	Description: (5)
	Expected Output: (5)
	Expected Output: (6)
	4. c). Recursive and Non-Recursive GCD Aim:
	Description: (6)
	Expected Output: (7)
	PROGRAM 5. Matrix Addition and Multiplication using Arrays
	Description: (7)
	Program: (7)
	Expected Output 1: (1)
	5. b). Matrix Multiplication using Arrays Aim:
	Program :
	Expected Output 1: (2)
	Expected Output 2: (1)
	Program on Linear Search and Binary Search using Recursive and Non – Recursive Procedures
	Program: (8)
	Expected Output: (8)
	6. b). Program on Linear Search using Non - Recursive Procedure?
	Description: (8)
	X is an array with n elements. This algorithm search for an item and finds the location of item in array X.
	Program: (9)
	Expected Output 1: (3)
	6. c). Program on Binary Search using Recursive Procedure?
	Description: (9)
	Program: (10)
	Expected Output: (9)
	6. d). Program on Binary Search using Non - Recursive Procedure?
	Program: (11)
	Expected Output 1: (4)
	Expected Output 2: (2)
	PROGRAM 7. Bubble Sort, Selection Sort
	Description: (10)
	Program: (12)
	Expected Output: (10)
	7. b). Selection Sort?
	Description: (11)
	Program: (13)
	Expected Output: (11)
	PROGRAM 8. Programs on pointers: pointer to arrays, pointer to functions
	Program : (1)
	Expected Output: (12)
	8. b). Pointer to Functions:
	Description: (12)
	Program: (14)
	{
	}
	PROGRAM 9. String Manipulations, Structures and Unions 9.a). Find the Length of a given String using Library Function?
	Description: (13)
	Program: (15)
	Expected Output: (13)
	9. b). Copy the given String to another String using Library Function?
	Program: (16)
	Expected Output: (14)
	9. c). Appending one String at the end of another String using Library Function?
	Program: (17)
	Expected Output: (15)
	9. d). Reverse the Contents of the given String using Library Function?
	Program: (18)
	Expected Output: (16)
	9. e). Compare the Contents of given two Strings using Library Function?
	Program: (19)
	Expected Output: (17)
	9. f). Abbreviate the Contents of given Strings using Library Function?
	Program: (20)
	Expected Output: (18)
	Aim: (1)
	Description: (14)
	(i) Tagged Structure:
	(ii) Type-defined structures:-
	Program: (21)
	Expected Output: (19)
	Aim: (2)
	Description: (15)
	Program: (22)
	Expected Output: (20)
	PROGRAM 10. File Handling Programs.
	Aim: (3)
	Description: (16)
	i) fopen():
	ii) fclose():
	fclose (file_pointer);
	iii) getc():
	iv) putc(): putc(c,fp);
	v) fprintf() & fscanf():
	fprintf(fp,”control string”,list);
	fprintf(fp,”%s %f %d”,name,6.6,age);
	fscantf(fp,”control string”,list);
	vi) getw() &putw():
	Syntax: N=ftell(fp);
	viii) rewind:-
	xi) fseek:-
	Program: (23)
	Expected Output: (21)
	10. b). Program to print the contents of the file on the monitor?
	Program: (24)
	Expected Output 1: (5)
	10. c). Program to Copy one File in to another?
	Program: (25)
	Expected Output: (22)
	10 d) Finding the No. of Characters, Words and Lines of given Text File? Aim:
	Description: (17)
	For reading data from file, Input functions used are (Input and output operations on files)
	Program: (26)
	Expected Output: (23)
	ADDITIONAL PROGRAMS
	Program : (2)
	Expected Output: (24)
	Program: (27)
	Expected Output: (25)
	Program: (28)
	Expected Output: (26)
	VIVA VOCE QUESTIONS
	2. DATA TYPES AND OPERATORS
	3. CONTROL STRUCTURES
	4. SORTING TECHNIQUES
	5. SEARCHING TECHNIQUES
	OPEN ENDED PROGRAM
	COLLEGE OF ENGINEERING & TECHNOLOGY

